US009436594B2

a2 United States Patent

Hars

10) Patent No.: US 9,436,594 B2
45) Date of Patent: Sep. 6, 2016

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

WRITE OPERATION WITH IMMEDIATE
LOCAL DESTRUCTION OF OLD CONTENT
IN NON-VOLATILE MEMORY

Inventor: Laszlo Hars, Lafayette, CO (US)

Assignee: Seagate Technology LI.C, Cupertino,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 508 days.

Appl. No.: 13/117,873

Filed: May 27, 2011

Prior Publication Data

US 2012/0303865 Al Nov. 29, 2012

Int. CL.
GO6F 12/00 (2006.01)
GO6F 12/02 (2006.01)
U.S. CL

CPC ... GO6F 12/0246 (2013.01); GO6F 2212/7201
(2013.01); GO6F 2212/7207 (2013.01)
Field of Classification Search
CPC GO6F 3/0647; GOGF 3/067, GOGF 3/0605;
GOGF 3/061; GOGF 3/0689; GOGF 2/0605;
GOG6F 3/0679; GOGF 12/0246; GOGF
2212/7205; GOGF 21/79; GOGF 2221/2143
USPC e 711/165, 103
See application file for complete search history.

100 — /101

(56) References Cited
U.S. PATENT DOCUMENTS

5,544,119 A * 8/1996 Wells et al. 365/185.11
6,026,017 A * 2/2000 Wong et al. 365/185.05
6,836,432 B1* 12/2004 Parker et al. ... 365/185.03
7,003,621 B2 2/2006 Koren et al.

7,089,350 B2* 82006 Koren etal. 711/103

7,475,203 Bl 1/2009 Petrillo, Jr. et al.

7,581,118 B2* 82009 McGovern 713/193

7,739,315 B2 6/2010 Haga
2009/0296475 Al* 12/2009 Hemink et al. 365/185.17
2010/0211737 A1* 82010 Flynn et al. 711/114
2010/0250835 Al* 9/2010 Paddon et al. 711/103
2010/0262721 Al* 10/2010 Asnaashari et al. 710/5
2010/0318839 Al* 12/2010 Avilaetal.coeee. 714/5
2011/0055458 A1* 3/2011 Kuehnecccoevinine 711/103

* cited by examiner

Primary Examiner — Charles Rones

Assistant Examiner — Nancy Wong

(74) Attorney, Agent, or Firm — Hall Estill Attorneys at
Law

(57) ABSTRACT

Method and apparatus for writing data to a non-volatile
memory device, such as a solid state drive (SSD). In
accordance with various embodiments, a host write com-
mand is serviced by writing a newer copy of user data to a
first selected empty physical location in a non-volatile
memory, and by concurrently overwriting an older copy of
said user data previously stored to a different, second
selected occupied physical location of the non-volatile
memory.

19 Claims, 4 Drawing Sheets

/106

CONTROLLER

MEM

102J

> I/F P

HOST

104J

MEMORY

U.S. Patent Sep. 6, 2016 Sheet 1 of 4 US 9,436,594 B2

ey 106
100—\\‘ //’ //’

CONTROLLER

MEM |
102,/ I MEMORY

> I/F P

HOST
e’ FIG. 1
108
110 ,-114 v
/ FLASH ARRAY
T = F === ===
: GARBAGE COLLECTION |
112 | UNIT|(Gcu) |
|———'————_——————1
I METADATIA STORAGE :
|

\118

LOCAL MEMORY /-1 16

CACHED
METADATA FIG. 2

U.S. Patent Sep. 6, 2016 Sheet 2 of 4 US 9,436,594 B2

DATA WRITE SEQUENCE /120 /1 22 /1 08

USER DATA
—— ENCODING [——» ENCRYPTION [——|

MEMORY
ARRAY
METADATA
™ GENERATION >
124 FIG. 3

/1 08

DATA READ SEQUENCE

128 126
[-

USER DATA
<«——| DECODING |«— DECRYPTION r— MAEAV'RC;F*(Y

FIG. 4

/1 08

130
/ ENCRYPTED DATA,
METADATA

USER DATA READ/WRITE MEMORY
CHANNEL RUBOUT DATA ARRAY

FIG. 5

U.S. Patent Sep. 6, 2016 Sheet 3 of 4 US 9,436,594 B2

140
HOST DATA WRITE
OPERATION
i /142

RECEIVE WRITE DATA FROM HOST, TEMPORARILY CACHE IN
LOCAL R/W BUFFER

¢ 144

SEARCH FOR PREVIOUSLY STORED COPY OF WRITE DATA

146

NO PREVIOUS
COPY?

148

OVERWRITE PREVIOUS COPY WITH RUBOUT DATA
¢ 150

) GENERATE METADATA FOR BUFFERED WRITE DATA
l /"152
ENCODE AND ENCRYPT WRITE DATA

‘ 154

STORE ENCODED ENCRYPTED DATA, METADATA

156
END

FIG. 6

U.S. Patent

Sep. 6,

2016

Sheet 4 of 4 US 9,436,594 B2

NAND FLASH

FL

—

244

BARRIER

248

DISC MEMORY

260

TE " 264

270\3 268

BE _—266

US 9,436,594 B2

1
WRITE OPERATION WITH IMMEDIATE
LOCAL DESTRUCTION OF OLD CONTENT
IN NON-VOLATILE MEMORY

SUMMARY

Various embodiments of the present invention are gener-
ally directed to a method and apparatus for writing data to
a non-volatile memory device, such as a solid state drive
(SSD).

In accordance with various embodiments, a host write
command is serviced by writing a newer copy of user data
to a first selected empty physical location in a non-volatile
memory, and by concurrently overwriting an older copy of
said user data previously stored to a different, second
selected occupied physical location of the non-volatile
memory. In some embodiments, a mapping table entry may
be updated which translates logical address to physical
address of the user data in the non-volatile memory.

These and other features and aspects which characterize
the various embodiments of the present invention can be
understood in view of the following detailed discussion and
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram for a data storage device.

FIG. 2 illustrates a memory structure of the device of FIG.
1.

FIG. 3 is an exemplary write sequence.

FIG. 4 is an exemplary read sequence.

FIG. 5 shows the concurrent writing of rubout data during
a data write operation.

FIG. 6 is a flowchart for a DATA WRITE routine.

FIG. 7 illustrates flash memory cells adapted for use in the
memory of FIG. 1.

FIG. 8 shows a rotatable medium adapted for use in the
memory of FIG. 1.

FIG. 9 provides a spin-torque transfer random access
memory (STRAM) cell adapted for use in the memory of
FIG. 1.

FIG. 10 shows a resistive random access memory
(RRAM) cell adapted for use in the memory cell of FIG. 1.

DETAILED DESCRIPTION

The present disclosure generally relates to data storage,
and in particular to methods and devices that may be used to
manage the storage of data in a data storage device.

Data storage devices generally operate to store blocks of
data in memory. The devices can employ data management
systems to track the physical locations of the blocks so that
the blocks can be subsequently retrieved responsive to a read
request for the stored data. Some types of data storage
devices, such as but not limited to solid state drives (SSDs),
can be arranged to write data to a new available location
each time a block is presented for writing. Over time, a
situation may arise where several versions of a given block
of user data may persist in memory, with one of the versions
being the most current data and the remaining versions being
stale data, which can be an older version of the block, or
another copy of the current version.

Metadata can be generated and maintained to track the
locations and status of the stored data. Such metadata tracks
the relationship between logical elements (such as logical

10

20

25

30

35

40

45

55

2

block addresses, LBAs) stored in the memory space and
physical locations (such as physical block addresses, PBAs)
of the memory space.

It may be desirable from time to time to sanitize the
memory to remove all copies (including older revisions) of
a particular data set. Such sanitizing operations can be
resource intensive, as an extended search may be required to
locate and erase each of the prior (stale) copies of the data
set from the memory. As the total number of copies
increases, the likelihood increases that less than all of the
data in the system will be effectively erased. This can allow
a motivated unauthorized party to recover previously stored
data from the device, as well as to obtain other information
relating to the system, such as file management structures,
encryption systems, the use of data compression, and so on.

Accordingly, various embodiments of the present inven-
tion are generally directed to a method and apparatus for
managing data in a non-volatile memory. As explained
below, a host write command is serviced by writing a newer
copy of user data to a first selected empty physical location
in a non-volatile memory and by concurrently overwriting
an older copy of said user data previously stored to a
different, second selected occupied physical location in the
non-volatile memory. In this way, there will generally only
be one copy of any particular data set in the memory at a
time. This may serve to enhance data security and improve
the efficiency of special data sanitizing operations.

These and various other aspects of the present disclosure
can be understood from a review of the drawings, beginning
with FIG. 1 which illustrates an exemplary data storage
device 100. For purposes of the present discussion, the
device 100 will be characterized as a solid state drive (SSD)
that utilizes NAND flash memory to provide non-volatile
storage of user data from a host device. It will be appreciated
that other forms of storage devices can be utilized, so FIG.
1 is merely exemplary and not limiting.

A programmable controller 101 uses programming in
local memory 102 to provide top level control of the device
100. The controller coordinates commands and data trans-
fers with the host through an interface (I/F) 104. The I/F
includes data buffering and back end processing capabilities
to facilitate data transfers with a main memory 106.

FIG. 2 shows one embodiment of the main memory of
FIG. 1. A flash array 108 is arranged into relatively large
erasure blocks 110 which are individually erasable prior to
allocation. Each block 110 includes a number of pages 112
of fixed size memory. In some embodiments, each page
constitutes a row of flash memory cells coupled to a com-
mon word line. Read and write operations can take place on
a page-by-page basis.

The pages can be referred to as mapping units and
represent smaller units of memory to which data are con-
currently written during write operations (although some
units can be configured to accept partial mapping unit
writes). These may be on the order of 4 KB-8 KB in size.
The larger erasure blocks are erased as a unit using a voltage
reversal technique and may be significantly larger, such as
on the order of about 256 KB-2 MB in size. The erasure
blocks 110 may be arranged on different chips, dies, layers,
etc. Garbage collection units (GCUs) 114 can be formed
from a selected number of blocks 110 which are allocated
and erased as a unit.

FIG. 2 further shows a local memory 116, which may take
a number of alternate forms such as volatile dynamic
random access memory (DRAM) or non-volatile random
access memory (NVRAM). The local memory 116 may be
incorporated into the flash array 108, or may be located

US 9,436,594 B2

3

elsewhere within the device 100 such as within the I/F
circuit 104 (FIG. 1). The local memory 116 is shown to store
a selected portion of cached metadata.

The metadata are used to track the locations of user data
stored to the flash array 108. While not limiting, it will be
contemplated that the user data are arranged as fixed sized
blocks of user data that are uniquely identified by logical
block addresses (LBAs). Other forms of logical addressing
may be used, so the use of LBAs is merely exemplary and
not limiting. The metadata may be appended to each erasure
block 110, or may be stored separately in specially denoted
erasure blocks such as at 118, or may occupy regular
mapping units which are not mapped to logical block
addresses, or some combination of these locations.

In the exemplary system 100, host read requests are issued
in terms of LBAs. For example, the host may issue a read
command with an identification of a selected range of LBAs
to be returned to the host (e.g., “read LBAs 100-199"). The
system will use the metadata to convert the logical addresses
of the LBAs to physical block addresses (PBAs) indicative
of the physical location where the associated data are stored.
The physical block addresses may be expressed in terms of
a particular GCU, block, page, bit offset, etc. sufficient to
identify the physical location of the user data. The system
will then retrieve the user data from the identified physical
location and transfer the data to the host.

It is contemplated that the local memory 116 will not have
sufficient storage capacity to retain a copy of all of the
metadata in the system at a given time. Hence, memory
access and swap operations may take place in the back-
ground to move the appropriate metadata from the flash
array 108 to the local memory 116 on an as-needed basis.
Suitable metadata tables and other data structures can be
used to facilitate such operations.

Host write requests are also issued in terms of LBAs (e.g.,
“write LBAs 100-199”"). The host will supply a write com-
mand and the associated user data to be written. The system
will process and write the user data to a suitable location
within the flash array 108, such as the next available page(s)
in the most recently allocated GCU. Metadata will be
generated and stored to describe the location and status of
the written data.

FIG. 3 illustrates an exemplary data write sequence in
accordance with some embodiments. Input user data may be
subjected to an encoding operation by encoding block 120.
This encoding may take a variety of forms, such as the use
of error correction codes (ECC), data compression, etc. The
encoded data may thereafter be encrypted by an encryption
block 122. A variety of encryption approaches may be
utilized, including multi-level encryption. The encrypted
data are thereafter stored in an appropriate location in the
memory array 108 by the application of appropriate write
signals.

As desired, a read-write-verify operation can be carried
out to ensure the data are correctly written to the array.
Writeback caching may also be employed so that the device
temporarily caches the user data and immediately informs
the host that the data have been written, and then schedules
the actual writing of the data at a subsequent time.

A metadata generator block 124 concurrently operates to
generate appropriate metadata associated with the encoded,
encrypted user data. The metadata are stored in an appro-
priate location within the memory array 108 or other suitable
location within the device 100.

FIG. 4 illustrates an exemplary data read sequence to
subsequently return user data to the host stored by the
sequence in FIG. 3. Although not specifically depicted in

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4, it will be understood that the read sequence includes
accessing of the pertinent metadata to locate the physical
location of the stored user data in the array 108. Appropriate
signals are applied to read out the stored data. A decryption
block 126 applies decryption to the recovered readback data,
and a decoding block 128 applies appropriate decoding steps
(e.g., error correction, data expansion). The recovered user
data are thereafter returned to the host.

Generally, it will be appreciated that the processing of a
read command may include various control operations such
as a decoding operation upon the received command, the use
of metadata from the system to identify the physical location
of the requested data from the array, the reading out of the
data from the physical location such as by strobing the
locations with different applied gate voltages to detect the
programmed states of the associated cells, the transfer of the
data to a local cache, the application of decoding operations
(error correction, decryption, etc.), and then the transfer of
the requested data to the host.

As noted above, a mapping unit of flash memory cells
generally cannot be overwritten with new data but instead
require an erasure operation (at the erasure block level)
before new data can be written to the unit. Each time a new
set of data are written to the memory array for a given logical
address (e.g., a particular set of LBAs), the data will
generally be written to a new physical location. This is due
to common design constraints of flash based non-volatile
memory; data cannot generally be overwritten, and can only
be erased in relatively large erase blocks. If multiple copies
of'a particular data set are present in the array 108, including
a most current copy and older, stale versions of the data, then
ideally the metadata control system will operate to ensure
that the older, stale versions of the data are ignored and only
the most current copy of the data is returned. However, the
stale versions could be found by an attacker by examining
the non-volatile memory separated from its controller. These
stale copies can represent security risks to the confidentiality
of the data and to the actions of the user and/or the operating
system, software applications, etc.

Various embodiments of the present invention generally
operate to write new data to the array 108 in such a way that
older, stale versions of the data are concurrently removed
(overwritten) from the system. As shown in FIG. 5, newly
received write data are presented to a read/write (R/W)
channel 130 of the device 100 during a write operation. The
R/W channel 130 operates to both process the newly pre-
sented data for writing to the array 108, and to provide
rubout data so that an older copy of the data is removed from
the array. This processing can be carried out in a variety of
ways.

In some embodiments, the older copy of data is located
and overwritten with selected rubout data, such as all logical
zeros (0’s). Other data overwriting schemes are contem-
plated, such as the application of bit-inverted data. Gener-
ally, the erasure of data blocks in an erasable memory such
as flash is avoided at the time of writing new data because
such erasures would affect relatively large erase blocks
which could store live (current version) data. Such data
would need to be relocated to another, empty location in
another erase block, which would be time intensive and
would tend to increase wear on the memory. The overwriting
of the stale copy or copies of the data is instead accom-
plished by adding charge to the floating gates (in the context
of a flash memory).

It is contemplated, although not necessarily required, that
this processing will be applied each time write data are
provided to the device. In this way, there will generally only

US 9,436,594 B2

5

be a single copy of any particular set of data in the device
at a given time. This can provide a number of benefits, such
as improved security and less information leakage.

FIG. 6 provides a flow chart for a HOST DATA WRITE
OPERATION routine 140, generally representative of steps
that may be carried out in accordance with various embodi-
ments of the present invention. While not limiting, the
routine 140 may represent programming used by the con-
troller 101 (FIG. 1) to process write commands from the
host. It will be appreciated that the routine is merely
exemplary and other steps, as well as a different ordering of
the listed steps, can be used as desired depending on the
requirements of a given application.

At step 142, write data received from the host are tem-
porarily stored in a suitable location, such as a local buffer
accessible by the R/W channel 130 (FIG. 5). The input data,
referred to herein as a newer copy of the data, may have an
associated logical address, such as a selected range of LBAs
associated therewith. A test is commenced at step 144 to
determine whether the LBA has not been mapped yet to
physical locations, that is, whether its current content has to
be erased. This may involve an accessing of the metadata
stored in the system, or by referencing some other structure
such as an LBA lookup table.

If a previous copy of the data is located, as indicated by
decision step 146, the routine continues to step 148 wherein
the previous copy of the write data is overwritten. While not
required, the metadata system may be updated at this time to
signify this processing.

The routine continues at step 150 to generate appropriate
metadata for the buffered write data. The buffered write data
is next subjected to appropriate pre-write processing, such as
encoding and encryption at step 152, after which the pro-
cessed data are written to the memory array 108 at step 154.
The process then ends at step 156, although it will be
appreciated that additional steps may also be taken, such as
a read-write-verify operation, host notifications, etc.

Benefits associated with the data rubout processing of
FIG. 6 in the context of a flash memory array can be
understood with reference to FIG. 7, which illustrates a
number of flash memory cells 200. The memory cells are
arranged in a NAND configuration and include localized
doped regions 202 in a semiconductor substrate 204. A gate
structure 206 is provided between each adjacent pair of the
doped regions 242 so that each cell takes a general nMOS-
FET configuration.

Each gate structure 206 includes a floating gate (FG) 208,
a control gate (CG) 210 and intervening isolation regions
212, 214. Data are stored by accumulating charge on the
floating gate 218. The presence of accumulated charge raises
the threshold voltage required on the control gate 220 place
the cell in a drain-source conductive state across channel
CH. A separate erasure operation is required to remove
accumulated charge from the floating gate.

The cells can be configured as multi-level cells (MLC)
through the storage of multiple states. For example, four
different levels of accumulated charge (from substantially no
charge to a maximum level of charge) can be used to enable
each MLC to store 2 bits of data (e.g., 11, 10, 01, 00). Due
to the need to carry out a separate erasure operation to
remove the storage state of previously programmed cells, it
will readily apparent that the data overwrite operation can be
used to bring the floating gates of the associated cells to the
maximum level of charge (e.g., writing each MLC to the
state “00”). Similarly, single level cells (SLCs) that store a
single bit in each cell (e.g., a 1 or 0) can be overwritten to
bring the floating gates to the maximum level of charge (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

6

writing each SLC to the state “0”). However, in some
existing flash memory architectures, the two stored bits
belong to two different LBAs, and overwriting the cell with
00 destroys the information in both the intended LBA and in
another one. Therefore, ML.C devices may require different
processing to take this into account.

It will be appreciated that programming a flash cell
involves moving trapped charge onto the floating gate of the
cell. Frasing removes all charge from the floating gate. To
rubout a cell programmed state in accordance with the
present discussion, the flash controller operates to increase
the amount of trapped charge. As noted above, this could
potentially affect other bits stored in MLC configured cells.

If all encoded bits in a cell require rubout, moving the
charge level to a maximum level serves to purge both bits (in
a two-bit ML.C). Otherwise, there may be two charge levels
which do not alter the other stored bits. The rubout process
can thus be performed to move the trapped charge level to
the higher of these two levels. Depending on the bits-to-
charge encoding, the outcome for rubbing out a 4-level (2
bit) MLC can be a constant value, the other bit, or its inverse.
If the other bit is used, data duplication occurs (that is, the
rubbed out bit mirrors the other bit stored in the MLC cell).

Accordingly, rubout of an MLC in accordance with the
present discussion may include performing an extra check to
see if any remaining bit of the MLC is mapped to live
(non-rubbed out) data. If not, the floating gate can simply be
driven to maximum charge. If so, the charge level of the
MLC is increased to the higher of the two allowable levels.

It will now be appreciated that the foregoing technique
operates to overwrite individual flash memory cells, or
relatively small pages or other groups of cells, with all zero
bits (or some other overwrite value) by applying charge to
the floating gates of the flash cells involved, without first
erasing them. This is a good security measure, because as a
background activity, the wear leveling, or the data access
optimization process of flash memory controllers constantly
copies some data to new locations in the flash memory. The
data in the old location is not needed or used any more, but
it could leak information to an attacker, who reads the flash
content with inexpensive direct ways (just addressing the
location and reading out the response signal from the
controller electronics).

A further security problem can arise in some instances
where unequal sized data blocks are arranged in the vicinity
of equal data blocks. These variations could in some cases
reveal “small” data changes in storage blocks, which an
attacker may be able to undo by simply swapping the
unequal blocks.

Accordingly, the controller logic operates to overwrite the
unneeded, old memory locations with all “0” bits (or other
value) when the content becomes obsolete. This way, at no
time can an attacker practically find multiple copies of the
data stored for a given logical block. Even if the blocks are
encrypted, the number and location of equal blocks may
reveal usage patterns, and the recent activity of the user. At
certain encryption modes, such as ECB or CBC with pre-
dictable 1V, repeating data patterns may also be found.

The overwriting method can be performed on much
smaller sized blocks (e.g., at the page level, etc.) than at the
larger erasure block level, and the method does not neces-
sarily require data to be copied or relocated. This provides
faster response and less wear.

There is further little need for the application of high
voltage to the chip substrate as normally used during erase

US 9,436,594 B2

7

operations, and this can further tend to reduce wear of the
flash memory. Information leakage to an attacker is also
reduced.

The methodology disclosed herein is complementary to
cryptographic means of data leak prevention, such as
through the use of randomized ciphers so that copies of
ciphertext at different physical locations in the memory are
encrypted differently. In some physical flash architectures,
expensive invasive hardware (HW) attacks might still be
able to recover some of the overwritten data by measuring
remnant charges in the floating gates, even after repeated
rubout applications. Nevertheless, this technique can be a
valuable stand-alone or complementary security measure to
protect against information leakage.

While the foregoing embodiments have been directed to
flash memory cells, it will be appreciated that the data rubout
processing discussed above can be readily adapted for other
types of memory. FIG. 8 shows a disc memory 230 adapted
to store data in the form of magnetization transitions along
concentric tracks 232 defined on the disc recording surface.
A moveable actuator 234 is used to align a data read/write
transducer 236 with the respective tracks to read data from
and write data to the tracks.

In some embodiments, the tracks are divided up into a
number of concentric zones, with each zone having an
associated band key that is incorporated in the encryption
processing of all the data stored in that zone. Hence, one
alternative approach is to write each new copy of a particular
data set to a different zone, thereby providing each copy with
a different band key. Such band-based processing can be
similarly applied to other forms of memory including the
flash memory array discussed above.

FIG. 9 shows another memory configuration in which the
data rubout processing set forth herein can be readily
implemented. The memory is formed from an array of
spin-torque transfer random access memory (STRAM) cells
240. Each memory cell comprises a magnetic tunneling
junction 242 with a variable magnetization free layer 244, a
fixed magnetization reference layer 246, and an intervening
barrier layer 248. The MTJ 242 is in series with a switching
device 250, characterized as an nMOSFET.

Data are stored by the MTJ 242 in relation to the orien-
tation of the free layer 244 relative to the reference layer
246. Generally, the MTJ 242 may exhibit a lower relative
electrical resistance in a parallel state, and a higher electrical
resistance in an antiparallel state. The programmed state of
the cell 240 can be sensed in relation to a voltage drop across
the cell responsive to a low magnitude read current.

FIG. 10 sets forth another memory configuration in which
the disclosed data rubout methodology can be used. The
memory constitutes an array of resistive random access
memory (RRAM) cells 260. Each cell has a programmable
resistive element 262 formed from opposing electrodes 264,
266 and an intervening oxide layer 268. A filament 270 can
be selectively formed across the oxide layer (and subse-
quently removed) to alter the overall resistance of the
memory cell 260. As before, the element 260 can be placed
in series with a switching device 250 to provide selective
access to the individual cells.

It will be appreciated that the various embodiments of the
present invention can provide benefits over the existing art.
Overwriting previous copies each time new copies of data
are written can help ensure that only the most current
revision data will generally be present in the array. This can
produce a number of benefits, including faster 1/O rates,
simplified metadata management, and enhanced data secu-

rity.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

While a variety of types and styles of memories have been
disclosed, such are merely exemplary as the various tech-
niques set forth herein can be adapted to a wide variety of
applications and environments Nothing disclosed in the
foregoing illustrative embodiments is intended or contem-
plated as being essential for implementation or limiting to
the scope of the claimed subject matter.

It is to be understood that even though numerous char-
acteristics and advantages of various embodiments of the
present invention have been set forth in the foregoing
description, together with details of the structure and func-
tion of various embodiments of the invention, this detailed
description is illustrative only, and changes may be made in
detail, especially in matters of structure and arrangements of
parts within the principles of the present invention to the full
extent indicated by the broad general meaning of the terms
in which the appended claims are expressed.

What is claimed is:

1. A method comprising:

receiving a host write command from a host device to

write a newer copy of user data to a non-volatile
memory;

temporarily storing the newer copy of the user data in a

local buffer;
searching the non-volatile memory to locate an older,
previously stored copy of the user data; and

servicing the host write command by transferring the
newer copy of user data from the local buffer to a first
selected empty physical location in the non-volatile
memory and by concurrently overwriting rubout data
onto the older, previously stored copy of the user data
stored to a different, second selected occupied physical
location in the non-volatile memory, wherein the
rubout data are not subsequently erased from the dif-
ferent, second selected occupied physical location in
the non-volatile memory during the servicing of the
host write command, the different, second physical
location comprising a plurality of multi-level cells
(MLCs) each adapted to store multiple bits, with a first
bit in each MLC in the different, second physical
location forming a portion of the older, previously
stored copy of the user data and a second bit in each
MLC in the different, second physical location forming
a portion of a different, second set of user data, the
rubout data overwritten by selectively adding charge to
the MLCs to alter the bits in the older, previously stored
copy of the user data without affecting the bits in the
second set of user data.

2. The method of claim 1, wherein the newer copy of user
data is a latest version of a data block having a selected
logical address, and the newer copy is the only copy of the
user data having the selected logical address in the memory
at a conclusion of the servicing of the host write command.

3. The method of claim 1, further comprising forwarding
a command complete status to the host device to signify
completion of the servicing of the host write command, and
subsequently performing a garbage collection operation to
erase the rubout data from the different, second physical
location in the non-volatile memory.

4. The method of claim 1, in which the first and second
selected locations are disposed in different erasure blocks of
a flash memory array, and the older, previously stored copy
of'the user data is overwritten in such a way that at least two
flash memory cells in the second selected location are
overwritten so as to store a maximum amount of charge
therein.

US 9,436,594 B2

9

5. The method of claim 1, in which the older, previously
stored copy of the user data is encrypted using a first
encryption key and the newer copy is encrypted using a
different, second encryption key, and the servicing step
further comprises purging the first encryption key from the
memory.

6. The method of claim 1, wherein the local buffer is a
local volatile memory coupled to the non-volatile memory
and the non-volatile memory is a flash memory.

7. The method of claim 1, in which the servicing of the
host write command comprises adding charge to floating
gates of the memory cells in the second selected location
without removing any charge from said floating gates during
the servicing of the host write command.

8. The method of claim 1, in which the servicing step
comprises generating metadata associated with the storage
of the newer copy of the user data in the first selected
location, and storing said metadata in a memory.

9. The method of claim 1, in which the searching step
locates a second older, previously stored copy of the user
data stored in a different, third selected location in the
non-volatile memory, and the servicing step further com-
prises concurrently overwriting second older, previously
stored copy of said user data with second rubout data
without subsequently erasing the second rubout data prior to
completion of the servicing of the host write command.

10. An apparatus comprising:

a non-volatile memory which stores an older copy of user

data in a first selected location; and

a control circuit which, responsive to receipt of a host

write command from a host device to write a newer
copy of the user data to the non-volatile memory,
temporarily stores the newer copy of the user data in a
local buffer, searches the non-volatile memory to locate
an older, previously stored copy of the user data, and
transfers the newer copy of the user data from the local
buffer to a second selected empty physical location in
the non-volatile memory and concurrently overwrites
rubout data onto the older, previously stored copy of the
user data in the first selected location without perform-
ing an associated erasure of the rubout data during the
servicing of the host write command, the first selected
location configured as a plurality of multi-level cells
(MLCs) each having a multi-bit programming state so
that a first bit of each MLC corresponds to a bit value
of'the older, previously stored copy of the user data and
a second bit of each MLC corresponds to a bit value of
a second set of user data, the overwriting of the rubout
data onto the older, previously stored copy of the user
data comprising selectively adding charge to the MLCs
so that the MLCs have new multi-bit programming
states that still correspond to the bit values of the
second set of data.

11. The apparatus of claim 10, in which control circuit
accesses metadata to identify the first selected location in
which the older copy of the user data is stored, generates
second metadata which identifies the second selected loca-
tion in which the newer copy of user data is stored, and
stores the second metadata in the memory.

12. The apparatus of claim 10, the control circuit further
adapted to transmit a write complete status to the host device
to signify completion of the host write command after the
writing of the rubout data to the first selected location and
after the writing of the newer copy of the user data to the
second selected location, the control circuit further adapted
to erase the rubout data from the first selected location after
the transmission of the write complete status.

10

15

20

25

30

35

40

45

50

55

60

65

10

13. The apparatus of claim 10, in which the control circuit
subsequently directs an erasure of each memory cell in the
first selected location to remove accumulated charge from
the memory cells in the first selected location and to place
the memory cells in the first selected location in condition to
store new data responsive to a subsequent host write com-
mand.

14. The apparatus of claim 10, in which the non-volatile
memory is characterized as a flash memory array arranged
as a plurality of erasure blocks, the first selected location
disposed within a first erasure block of said plurality, the
second selected location disposed in a different, second
erasure block of said plurality, and the control circuit sub-
sequently schedules a garbage collection operation upon a
garbage collection unit that includes the first erasure block
independently of the servicing of the host write command.

15. The apparatus of claim 10, in which the control circuit
further operates to generate metadata associated with the
storage of the newer copy of the user data in the second
selected location, and directs the storage of said metadata in
a memory.

16. A data storage device, comprising:

a flash memory array having a first selected location that
comprises a plurality of multi-level cells (MLCs) each
having a multi-bit programmed state where a first bit of
the multi-bit programmed state of each MLC corre-
sponds to a bit value in an older, previously stored copy
of user data and a second bit of the multi-bit pro-
grammed state of each MLC corresponds to a bit value
of a second set of user data; and

a controller adapted to, responsive to a host write com-
mand received from a host device to write a newer copy
of the user data to the flash memory, direct a storage of
a newer copy of the user data associated with the
received host write command in a local buffer, direct a
search of the flash memory array for the older copy of
the user data, and to direct a transfer of the newer copy
of the user data from the local buffer to a second
selected empty physical location in the flash memory
array, wherein the controller is further adapted to,
responsive to the host write command, to direct a
concurrent overwrite of the older copy of the user data
with rubout data in the first selected location without an
associated erasure of the first selected location , the
concurrent overwrite selectively adding charge to the
MLCs so that the first bit of the multi-bit programmed
state of each MLC corresponds to a bit value in the
rubout data and the second bit of the multi-bit pro-
grammed state of each MLC corresponds to a bit value
in the second set of user data.

17. The data storage device of claim 16, further compris-
ing a metadata generation block which generates metadata
associated with the newer copy of the user data associated
with the second selected location and which directs a storage
of said metadata in the flash memory array.

18. The data storage device of claim 16, in which the older
copy and the newer copy share at least one common host
level logical block address (LBA), and at a conclusion of the
servicing of the host write command by the controller, the
new copy is the only copy of data in the memory with the
host level LBA.

19. The data storage device of claim 16, in which the
controller subsequently schedules a garbage collection
operation to remove the accumulated charge from the MLCs
in the first selected location.

#* #* #* #* #*

